Workshop on The Role of Artificial Intelligence in Maintaining Mental Health, Budapest, 2024

Human-centered AI dilemmas in helping people with dementia

Péter Antal

Artificial Intelligence Research Group

Department of Artificial Intelligence and Systems Engineering

Overview

- What is human-centred AI/AGI
- A(G)I in dementia/AD research
- A(G)I tools in dementia care
- HC-AI dilemmas

What is (human-centered) A(G)I

What is Al?

Standard model of Al

- Humans are intelligent to the extent that our actions can be expected to achieve our objectives
- Machines are intelligent to the extent that their actions can be expected to achieve their objectives

Scientific fields

- Engineering
- Computer science
- Cognitive science
- Probability theory
- Utility theory
- Causality research

Human-compatible Al

 Machines are intelligent to the extent that their actions can be expected to help us achieving our objectives [S.Russell, 2018: AI25]

Driving forces

- Moore's law
- Hardware
- Data
- Methods: theorem provers, goal-driven search, generative grammars, .. transformers

What is human-centred AI?

Human-computer interaction

- Man-machine interfaces
- Man-machine hybrids
- Linguistic interfaces
- Sensorimotoric/brain-computer interfaces
- Augmented reality

Human-centered AI (HCAIM)

- Human rights (mental health,..)
- Democratic society (fake news, 1984,...)
- Trustworthy/Explainable Al
- Human-computer cooperation
- Collaborative workflows
- Auditing/approval (AI safety)

Human-compatible Al

- Intelligence explosion
- Artificial general intelligence (AGI)
- Superintelligence
- Existential risk
- Value alignment
- Provably beneficial AI

Intelligence everywhere

- Smart wearable electronics
- Smart homes/cities
- Autonomous vehicles

Zoo of Als

Narrow AI (nAI): expert-level performance in a given domain/task

Good old fashioned AI (GOFAI): expert-based systems using well-defined symbols and explainable rules

Deep learning: simultaneous learning of latent representations (features, ~symbols) and their usage

Artificial general intelligence (AGI): can learn to accomplish any intellectual task that humans can perform.

Foundation models: "trained on broad data that can be adapted to a wide range of downstream tasks"¹

Human-level (machine) intelligence (HLMI): "unaided machines can accomplish every task better and more cheaply than human workers"²

Superintelligence: "machine intelligence that is vastly better than humans at all professions"²

Strong AI: emergence of mind-like properties (e.g., conscience) beyond mere simulations of weak AIs.

Explainable AI (XAI): AIs that can be understood by humans.

Trustworthy AI: Als that can be expected to achieve our (human) objectives.

Human-centered AI (HCAI): human compatible AIs deferring to humans to respect human rights.

[1] Bommasani, Rishi, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein et al. "On the opportunities and risks of bundation models." *arXiv preprint arXiv:2108.07258* (2021).
[2] Katja Grace, Zach Stein-Perlman, Benjamin Weinstein-Raun, and John Salvatier, "2022 Expert Survey on Progress in Al." AI Impacts, 3 Aug. 2022

A chronology of artificial general intelligence (AGI)

[1] Turing, Alan Mathison. "On computable numbers, with an application to the Entscheidungsproblem." J. of Math 58, no. 345-363 (1936): 5.

[2] Chomsky, Noam. "Three models for the description of language." IRE Transactions on information theory 2, no. 3 (1956): 113-124.

[3] Newell, Allen, John C. Shaw, and Herbert A. Simon. "Report on a general problem solving program." In IFIP congress, vol. 256, p. 64. 1959.

[4] Werbos, Paul. "Beyond regression: New tools for prediction and analysis in the behavior science." PhD thesis, Harvard University (1974).

[5] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. "Learning representations by back-propagating errors." nature 323, no. 6088 (1986): 533-536.

[6] Lenat, D. B., M. Prakash, M. Shepherd. "CYC: Using common sense knowledge to overcome brittleness and knowledge acquisition bottlenecks." AI magazine 6, no. 4 (1985): 65-65.

[7] Ferrucci, David, Anthony Levas, Sugato Bagchi, David Gondek, and Erik T. Mueller. "Watson: beyond jeopardy!." Artificial Intelligence 199 (2013): 93-105.

[8] Silver, David, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot et al. "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play." Science 362, no. 6419 (2018): 1140-1144.

[9] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." Advances in neural information processing systems 30 (2017).

[10] Reed, Scott, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez et al. "A generalist agent." arXiv preprint arXiv:2205.06175 (2022).

[11] Bubeck, Sébastien, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee et al. "Sparks of artificial general intelligence: Early experiments with gpt-4." arXiv preprint arXiv:2303.12712 (2023).

LLM scaling laws for space, time, and data

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute² used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

Kaplan, Jared, et al. "Scaling laws for neural language models." *arXiv preprint arXiv:2001.08361* (2020). Hoffmann, Jordan, et al. "Training compute-optimal large language models." *arXiv preprint arXiv:2203.15556* (2022). Besiroglu, Tamay, et al. "Chinchilla Scaling: A replication attempt." *arXiv preprint arXiv:2404.10102* (2024).

Towards AGI

Year	System	Computation	Data	Knowledge	Human-le	evel machine ir	telligence
1957	General Problem Solver	kFLOPS		КВ	1.00		
1995	Deep Blue	gFLOPS		MB	y of HLI		
2011	IBM Watson	80 tFLOPS		хТВ			
2017	AlphaZero	100 tFLOPS	0	0	E 0.25		
2014<	Tesla Autopilot	x100 pFLOPS	PB		0.00	25 50 Vocus from 2016	75 100
2021	AlphaFold	100 pFLOPS	ТВ		— / — F	Aggregate Forecast (with 95% Confic andom Subset of Individual Forecas	lence Interval) ts
2022	Large language models	10-10k eFLOPS (1019)		PB	Probability of superintelligence		
						Within 2Y	Within 30Y
					2016 ²	10%	50%
					2022 ³	10%	60%

Bommasani, Rishi, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein et al. "On the opportunities and risks of foundation models." *arXiv preprint arXiv:2108.07258* (2021).
Grace, Katja, J. Salvatier, A. Dafoe, B. Zhang, and O. Evans. "When will AI exceed human performance? Evidence from AI experts." Journal of Artificial Intelligence Research 62 (2018): 729-754.
Katja Grace, Zach Stein-Perlman, Benjamin Weinstein-Raun, and John Salvatier, "2022 Expert Survey on Progress in AI." AI Impacts, 3 Aug. 2022

The causal hierarchy

Level (Symbol)	Typical Activity	Typical Questions	Examples
1. Association P(y x)	Seeing	What is? How would seeing <i>X</i> change my belief inY?	What does a symptom tell me about a disease? What does a survey tell us about the election results?
2. Intervention $P(y do(x), z)$	Doing, Intervening	What if? What if I do X?	What if I take aspirin, will my headache be cured? What if we ban cigarettes?
3. Counterfactuals P(y _x x', y')	Imagining, Retrospection	Why? Was it <i>X</i> that caused <i>Y</i> ? What if I had acted differently?	Was it the aspirin that stopped my headache? Would Kennedy be alive had Oswald not shot him? What if I had not been smoking the past two years?

Pearl, Judea. "The seven tools of causal inference, with reflections on machine learning." Communications of the ACM 62.3 (2019): 54-60.

Causal inference with LLMs?

Figure 1: Representative causal tasks, their positions in the causal ladder, and examples of prompts. PCD = pairwise causal discovery; CA=causal attribution; ATE=average treatment effect; CDE=controlled direct effect; BAJ=backdoor adjustment; CE=causal explanation; CR=counterfactual reasoning; NDE=natural direct effect.

Ma, Jing. "Causal inference with large language model: A survey." *arXiv preprint arXiv:2409.09822* (2024).

Hype Cycle for AI, 2023 (Gartner)

A(G)I in dementia/AD research

SOLID: Effects of early-Stress On Lipid mediators and Inflammation for early Detection of neurodegeneration

The Joint Research Program incorporates seven main partners in a large-scale project with total funding of approximately \$CA 2 million from the European Union's Joint Research Program on Neurodegenerative Diseases (JPND). The project, which stems from the Food4BrainHealth International Research Network and the International Associated Laboratory Optinutribrain, brings together the expertise of researchers from France, Australia, the Netherlands, Hungary, Germany and Canada.

RMIT University Barwon Health. **Deakin University**

Sophie Lavé Université de Bordeaux

Péter Antal Budabest University

of Technology and Economics

Finding early biomarkers for neurodegeneration and cognitive dysfunction represents the next frontier for prevention and early intervention strategies in diseases like

Alzheimer's Disease.

SOLID is completing a discovery program in humans to identify early biomarkers of neurodegeneration and cognitive decline. We are also back-translating candidate and newly identified biomarkers to preclinical models of Alzheimer's Disease, testing how these biomarkers lead to brain

Christoph Rummel Justus Liebig University Giessen

inflammation.

Frédéric Calon Université Laval

Common complex factors of multimorbidities

Marx, P., Antal, P., Bolgar, B., Bagdy, G., Deakin, B. and Juhasz, G., 2017. **Comorbidities in the diseasome are more apparent than real**. *PLoS computational biology*, *13*(6), p.e1005487. Gezsi, Andras, et al. "**Unique genetic and risk-factor profiles in clusters of major depressive disorder-related multimorbidity trajectories**." Nature Communications 15.1 (2024): 7190.

Dementia and factors of intelligence

Grunden, Nicholas, and Natalie A. Phillips. "A network approach to subjective cognitive decline: Exploring multivariate relationships in neuropsychological test performance across Alzheimer's disease risk states." *Cortex* 173 (2024): 313-332.

Foundation models in AD research

Mao, Chengsheng, et al. "AD-BERT: Using pre-trained language model to predict the progression from mild cognitive impairment to Alzheimer's disease." Journal of Biomedical Informatics 144 (2023): 104442.

AGI for dementia care

Modifiable risk factors related to dementia/AD

Risk factor	Relative risk ^a	Assessment method	Dementia risk scales ^b			
			CAIDE ^{S1}	ANU-ADRI ^{S2,S3}	BDSI ^{S4}	
Genetic						
APOE-e4 heterozygous	1.9	Real-time protein chain reaction	•			
APOE-e4 homozygous	5.3					
Potentially modifiable without meas	ured brain path	ology				
Early life (age <45 years)						
Less education	1.6	I—International Standard Classification of Education ⁵⁵	•	•	•	
(primary school only)		P—Years of education ⁵⁵				
Midlife (age 45–65 years)						
Hearing loss	1.9	I—Pure tone audiometry ⁵⁶ P—Whispered Voice Test ⁵⁷ speech-in-noise paradiams or self-report				
Traumatic brain injuny	1.8	-Ohio State University traumatic brain injuny identification method ⁵⁸		•		
Hadmatic brain hijory	1.0	P—Medical history, informant- or self-report		•		
Hypertension (>135-140/85-90) ^{59,c}	1.6	I—Ambulatory devices, physician measurement	•			
		P—Domestic devices, patient self-measurement				
Alcohol consumption (>21 units per week)	1.2	I—Quantity-frequency measures with beverage-specific assessment of time frames and binge-drinking episodes ⁵¹⁰ P—Self report		•		
Obesity (body-mass index \geq 30)	1.6	I—Waist circumference ^{S11} and measurement of height and weight P—Body mass index based on self-report	•		•	
Late life (age >65 years)						
Smoking	1.6	Self-report of smoking status (pack years, i.e. number of daily packs multiplied by number of years smoking; or current smoking status, i.e. current versus former/never smoker)		•		
Depression	1.9	I—Rating scales e.g. Patient Health Questionnaire (PHQ) ⁵¹² or the Hospital Depression and Anxiety Scale ⁵¹³		•	•	
Contail teachattain		P—Self-report of feeling depressed of having history of diagnosed depression		•		
Social isolation	1.0	Index ⁵¹⁵ P—Self-report of social isolation		•		
Physical inactivity	1.4	I – Accelerometers, ⁵¹⁶ heart rate counters, ⁵¹⁶ smart phone, ⁵¹⁶ or smart watch apps ⁵¹⁶ P – Self-reported measures/questionnaires	•	•		
Diabetes	1.5	I—Fasting plasma glucose levels (≥7.0mmol/l) or HbA1c (≥6.5%), or oral glucose tolerance test to diagnose impaired glucose tolerance ^{S17} P—Medical history, informant or self-report		•	•	
Air pollution	1.1	Further research is needed to establish a practical and clinically relevant measure $^{\rm S18}$				

Frisoni, Giovanni B., et al. "Dementia prevention in memory clinics: recommendations from the European task force for brain health services." The Lancet Regional Health–Europe 26 (2023).

Roadmap for brain health services

Frisoni, Giovanni B., et al. "Dementia prevention in memory clinics: recommendations from the European task force for brain health services." The Lancet Regional Health–Europe 26 (2023).

Technologies supporting people with dementia - 1

Device name (manufacturer)	Functions	Developed for	Level of evidence ^a	Refs
Monitoring				
Google Home (Google)	Calendar reminders, weather and controls lighting and heating through smart phone	General use	Level VII	NR
Find Me Tunstall Watch (Tunstall)	GPS monitoring. Can aid orientation, location tracking and fall detection; offers 24/7 support	Cognitively impaired	Level V	53,58
Wireless movement sensors (Just Checking)	Text and e-mail messages to alert carer. Information on activity and when different rooms are used	Cognitively impaired	Level II	59
Assistive robotics				
Care-O-Bot (Fraunhofer Institute for Manufacturing Engineering and Automation)	A range of applications, including fetch and carry, monitoring, reminders and communication	Older people and cognitively impaired	Level V	60
RAMCIP (EU Horizon 2020 project)	Reminds individuals about daily tasks such as taking medications, brings fluid and food, can detect falls and offers communication via video conference	MCI	Level VI	14
Riken and Robear (RIKEN-SRK)	Can transfer frail people from floor to chair or bed	Older people and disabled	Level VII	NR
Assistive innovations				
Obi	Robotic spoon that allows automatic or semi- automatic feeding	Disabled	Level VII	NR
MARIO (National University of Ireland)	Entertainment and reminders	Older people and cognitively impaired	Level VI	42,61,62
MiRo (Consequential Robotics)	Autonomous robotic dog that reminds user about medications, hydration and temperature, and can contact emergency services	Cognitively impaired	Level VII	NR

Moyle, Wendy. "The promise of technology in the future of dementia care." Nature Reviews Neurology 15.6 (2019): 353-359.

Technologies supporting people with dementia - 2

Therapeutic robots				
Giraff (Camanio)	Telepresence robot that enables monitoring via remote connection to anyone worldwide	Older people and cognitively impaired	LevelIII	63
PARO (AIST)	Therapeutic pet robot that responds to interaction	Cognitively impaired and children with autism	Level I–II	28-30,64
Therapeutic technology				
Skype, FaceTime and Google Hangouts (various)	Communication apps for mobile devices	Generaluse	Level IV	65
The Talking Photo Album (CommunicATe)	Photos linked to individual messages that aid reminiscence	Cognitively impaired	Level VII	NR
The Dawn Clock (Dawn Clocks)	Five medication and lifestyle alarms	Cognitively impaired	Level VII	NR
Automated medication-dispensing service (Philips)	Medication-dispensing device	Cognitively impaired	Level VII	NR
Apps				
Luminosity	Brain training	MCI	Level VII	NR
Alzheimer Master	Plays voice recordings to remind individuals to take medication and drink water, etc.	Cognitively impaired	Level VII	NR
Bettercog, COMCOG	Computerized cognitive training programmes	MCI	Level	66,67

Moyle, Wendy. "The promise of technology in the future of dementia care." Nature Reviews Neurology 15.6 (2019): 353-359.

Overview of assistive solutions in dementia care

Ali, Muhammed Toqeer, et al. "ICT-based solutions for Alzheimer's Disease Care: A systematic review." IEEE Access (2024).

Chronology of technologies

Ali, Muhammed Toqeer, et al. "ICT-based solutions for Alzheimer's Disease Care: A systematic review." IEEE Access (2024).

Use of robots in dementia care

Number of Included Studies (n,%)

- Daily Life SupportCognitive Assessment
- Cognitive Therapy

Faisal, Mohammed, et al. "Robot-based solution for helping Alzheimer patients." SLAS technology 29.3 (2024): 100140.

Data types in technologies

Sonsing Technology	Involved Sensors	Application Field Technology						
Sensing Technology	mvorveu Sensors	Telemedicine	E-health	ІоТ	Smart Environment	IoMT	AAL	PAS
Inertial	Accelerometer, Gyroscope, Magnetometer	[32]		[43] [46]	[36] [37] [38] [39] [41] [42]	[60]	[13] [49] [51] [55]	[63]
Physiological	Heart rate, Oxygen, Blood pressure			[12] [45] [48]	[35] [37] [41]	[14] [56] [57] [58] [59] [60] [61] [62]	[50]	[63]
Environmental	Pressure, Temperature, Light, Gas, GPS	[9] [32]	[33]	[12] [43] [44] [45] [46] [47] [48]	[11] [35] [36] [37] [38] [40] [41] [42]	[14] [58] [60] [57]	[13] [49] [50] [52] [54] [55]	[15] [63] [17] [64] [65] [66]
Radio Signals	Wi-Fi, BLE, mm- Wave							
Video	Video, Image	[31]		[12] [16] [46]				[17]
Digital Platforms	Mobile App, Web Portal, Questionair		[10] [34] [18]	[48]			[53]	[15] [17]

Ali, Muhammed Toqeer, et al. "ICT-based solutions for Alzheimer's Disease Care: A systematic review." IEEE Access (2024).

Cognitive assessment tests in PAS

Type of robot	Extracted features	Cognitive assessment test
Pepper robot	Visuospatial/Executive, Language and Attention, Naming, Abstraction, Delayed Recall, Orientation	Montreal cognitive assessment (MoCA)
Giraffe robot	Based on Cognitive Screening Test	TMT and BT
Qbo robot	Based on the Cognitive Screening Test and Activities of Daily Living	DemTect
NAO robot	Time Elapsed, Transition Test, Currency Conversion, Storytelling, Complex and Repeat Statement, Object Identification, Personal Questions	Was Not Mentioned
Telenoid	Patients' conversational data	Clinical Dementia Rating (CDR)
Omni	Simple reaction times, Position tracking, and Stabilization tasks	Clinical Dementia Rating (CDR)

Karami, Vania, et al. "Socially Assistive Robots for Individuals with Alzheimer's Disease: A Scoping Review." Archives of Gerontology and Geriatrics (2024): 105409.

Outcome	Questionnaire	References
Cognitive/ memory functions	MMSE; Severe MMSE (sMMSE); CNS Vital Signs;	Kase et al., 2019,Kubota et al., 2020,Lee et al., 2020), Maddahi et al., 2020,
	Cambridge Neuropsychological Test Automated Battery (CANTAB):	Obayashi et al., 2020, Stogl et al., 2019)
	Global Deterioration Scale (GDS);	
	Clinical Dementia Rating (CDR); International Classification of	
	Diseases and Associated Disorders (ICD-10);	
	Functional Independence Assessment (FIM);	
	Degree of Daily Life Independence Score for People	
Robot impact	with Dementia (DDLIS-PD) Apathy Inventory (AI);	(Feng et al., 2019, (Heerink
_	Neuropsychiatric Inventory (NPI):	et al., 2013), Lee et al., 2020), (Rudzicz, Wang,
	Apathy Scale for Institutionalized Patients with	Begum, & Mihailidis, 2015), (Vostry & Zilcher, 2019)
	Dementia Nursing Home version (APADEM-NH)·	
	Quality-of-Life Scale (QUALID) Quality of Life in Alzheimer's Disease;	
	Rating Anxiety in Dementia; Geriatric Depression;	
Social bonding	Observational Measurement of Engagement (OME); Observed Emotion Rating Scale	(Di Nuovo et al., 2019, Obayashi et al., 2020)
	(OERS); World Health Organization`s ICF	
Cognitive impairment	Rowland Universal Dementia Assessment Scale (RUDAS);	(Gerłowska et al., 2018), (Tsardoulias et al., 2017)
Behavior	MoCA Human skeleton-based	(Gerłowska et al., 2018,
monitoring	detection; Cohen-Mansfield Agitation	Kuwamura et al., 2016, Sandoval & Favela 2017)
	Inventory-Short Form (CMAI-SF)	Sandoval & Favela, 2017)
Reality orientation	Nishimura Mental State Scale for the older people (N-M scale); Normal ADL; Hierarchic Dementia Scale-	(Korchut et al., 2017)

E-health-based technologies

Ref. (Year)	Objective	Methodology/Technology	Sensors/Controller	Limitations
[10] (2022)	Create an Android-based assistive healthcare application for caregivers of Alzheimer's patients to manage daily tasks, medications, and improve patient memory with brain games	Mobile Technology	NA	Lack of empirical evidence on the app's effectiveness in improving patient outcomes or reducing caregiver burden
[33] (2021)	Propose a knowledge-powered personal- ized virtual coach for diet and nutrition assistance to Alzheimer's patients or care- givers.	Cloud-based architecture	NA	Limited generalizability be- yond Alzheimer's popula- tion.
[34] (2017)	Enroll technology-enabled caregivers to assess caregiver burden, depression, anxi- ety, and sleep disturbance.	Technology-enabled caregivers	NA	Reliance on limited assess- ment tools
[18] (2017)	Provide additional helpful information about scheduled events in a user-friendly and enjoyable manner.	Semantic web application (CAPTAIN MEMO) based on the OntoMemo dynamic ontology.	NA	Limited consideration of ethical issues

Ali, Muhammed Toqeer, et al. "ICT-based solutions for Alzheimer's Disease Care: A systematic review." IEEE Access (2024).

Smartenvironmentbased technologies

Ali, Muhammed Toqeer, et al. "ICT-based solutions for Alzheimer's Disease Care: A systematic review." IEEE Access (2024).

Ref. (Year)	Objective	Methodology/Technology	Sensors/Controller	Limitations
[11] (2022)	Create a computational framework for smart homes that enhances awareness for individuals with AD. Utilize context- aware tools, predict behavior and uncertain events, simulate errors and behaviors, en- able interventions, provide realistic activity simulations, and validate with real users	Cognitive Modelling	NA	No distribution of errors among stages or criteria pro- vided
[35] (2020)	Design a novel IoT-based solution for tracking activities and monitoring health of Alzheimer's patients.	IoT, Cloud Computing	NA	Reliability limitations of IoT devices used.
[36] (2020)	Present two approaches for simulating the behavior of individuals with Mild Cogni- tive Impairment (MCI) and AD using be- havior trees and error injection.	AI (behavior trees)	Motion, light/RFID	Limited generalizability, sample size, and real- world complexities. Data collection, measurement accuracy, and ethical considerations.
[37] (2020)	Develop and implement a medical system using IoT to improve the quality of life for individuals with AD and reduce caregiver burden.	юТ	Motion processing unit sensor, GPS module, heart rate sensor, microcon- trollers, LCD display, accelerometer/gyroscope, Buzzer, Arduino Nano, Node MCU ESP8266	Ethical concerns about pri- vacy, autonomy, and in- formed consent.
[38] (2019)	Propose a framework for monitoring pa- tients with Alzheimer's and other demen- tias in their homes using sensors to gather contextual information.	Conceptual framework	NA	Limited scope, not applica- ble to other cognitive im- pairments or disabilities.
[39] (2019)	Develop an assistive system that recog- nizes the intent of Alzheimer's patients in completing daily tasks and guides them towards successful completion.	AAL technology	RFID sensors, Bluetooth module/Arduino	Limited coverage of day-to- day activities, excludes so- cial interaction and cogni- tive stimulation.
[40] (2018)	Propose a cost-effective AI-enabled sys- tem to enhance the quality of life for Alzheimer's patients.	AI, IoT, Cloud Computing	Light, Bulb, Smartphone	No empirical data on sys- tem effectiveness or user- friendliness
[41] (2015)	Develop a Tele-health system based on IoT technology for monitoring elderly individ- uals with AD remotely.	IoT and RFID	ECG wireless sensor, UHF passive wearable RFID wristband/RFID.	Study conducted on a lim- ited number of participants
[42] (2015)	Support Alzheimer's patients in living in- dependently within their living rooms, pro- viding necessary emergency assistance and support.	Activity tracking and moni- toring	Kinect device, NFC read- ers/Smart Phone	No consideration of imple- mentation and maintenance costs

	Ref. (Year)	Objective	Methodology/Technology	Sensors/Controller	Limitations
	[12] (2022)	Develop a secure IoT assistant-based sys- tem for Alzheimer's Disease providing psychological support and secure info sharing.	IoT, CNN, steganography, S/MIME protocol	Microphone, buzzer, earpiece, NEO 6MV2 GPS module, Raspberry Pi 3	Privacy/security concerns, accuracy and reliability limitations, ethical considerations
IoT-based	[16] (2022)	Develop a wearable camera-aided device and Bluetooth ear-complementary device prototype integrated with AI technology. Improve awareness for Alzheimer's pa- tients and reduce caregivers' burden	AI, IoT, HAAR cascades al- gorithm	ESP32 camera, Smart Phone	Technical issues with the smart specs technology used. Impact on intervention effectiveness and data reliability
technologies	[43] (2021)	Develop a nursing system with IoT de- vices that includes communication, lo- cation tracking, fall detection, and early warning services for aging and dementia patients	IoT, RNN, LSTMs	IMU, accelerometer, gyroscope, GPS positioning chip, MCU	Ethical considerations re- lated to data privacy, secu- rity, and informed consent may not be adequately ad- dressed
	[44] (2021)	Build an IoT-enabled global tracking sys- tem and mobile app for people with AD. Create a wearable tracking device using GPS technology and integrate it with an internet-connected system for real-time ac- cess	IoT, Wireless Network, GPS technology	Neo-6m GPS module, SIM800L Mini GSM/GPRS module, Arduino	May not address the long- term sustainability, scalabil- ity, or adaptability of the system
	[45] (2021)	Propose the DCARE model for monitoring Alzheimer's patients, develop a prototype, and evaluate it using the DCARE Dataset Simulator Tool.	Ambient Intelligence, IoT	Wearable sensors, Smart Watch	Limited caregivers and pa- tients used the prototype. In- sufficient time to collect in- sights on engagement and effectiveness. synthetic data instead of real sensor data.
Ali, Muhammed Toqeer, et al.	[46] (2020)	Propose an architecture for an Internet of Health ecosystem, including Alzheimer's prediction using movement data and track- ing abnormal behaviors.	IoT, deep learning, fog com- puting, cloud	Gait sensors, Bluetooth board sensors	Limited evaluation, limited access, ethical considera- tions.
Alzheimer's Disease Care: A	[47] (2018)	Develop an RFID-based localization system for patients with memory loss.	IoT, RFID	Mat Pressure Sensor, RFID Reader, RFID Tags	Privacy concerns, limited scope
systematic review." IEEE Access (2024).	[48] (2018)	Use IoT and a mobile application to sup- port Alzheimer's caregiving and prevent caregiver burnout.	IoT	Smartwatch	Limited consideration of ethical issues

	Ref. (Year)	Objective	Methodology/Technology	Sensors/Controller	Limitations
AAL bood	[13] (2022)	Address senior health deterioration, pro- pose an Alzheimer's IoT solution, and evaluate accuracy using sensors in pa- tients' homes. Enhance security with AES and assist patients and families	ML, IoT, CNN	Motion sensor, pressure, moisture sensors, Arduino, Raspberry Pi, RFID, Zigbee	Limitations in accuracy, re- liability, or security of the IoT technology used. Lim- ited generalizability
technologies	[49] (2019)	Develop a system for reminding patients of daily tasks and medication, monitoring falls, and sending location coordinates.	Assistive Technology	GPS module, GSM module, LCD, buzzer, accelerometer module, ADC converter/Arduino Mega	Sample size, privacy, and se- curity concerns.
	[50] (2019)	Create a tool to evaluate the well-being of patients and support healthcare decision-making.	iBeacon technology, ICT, Localization Algorithm	Raspberry pi3 (Antenna)	Potential bias, limited gen- eralizability, subjective as- sessments, ethical consider- ations.
	[51] (2019)	Enhance patient and family support through a real-time Ambient Assisted Living (AAL) system using Internet of Things (IoT) and Augmented Reality (AR) concepts.	IoT and Augmented Reality (AR)	Relay actuators, sensors, smartphones/glasses	Small sample size, limited generalizability.
	[52] (2019)	Detect location of misplaced objects, dis- play names of friends/relatives on AR dis- play, monitor navigation, and send location to caregiver.	Augmented Reality (AR)	Switch, camera, accelerometer/gyroscope, display, microcontroller, Bluetooth module/glasses	Cost and accessibility con- cerns
	[53] (2018)	Develop a mobile application using AR to assist individuals with early-stage AD.	Mobile Technology, Aug- mented Reality	NA	Limited generalizability due to small sample size
Ali, Muhammed Toqeer, et al. "ICT-based solutions for	[54] (2018)	Develop a system to address wandering episodes and falling risks for dementia pa- tients using deep learning and a smart- watch.	Deep Learning	Smartwatch	Limited coverage due to re- liance on smartwatch
Alzheimer's Disease Care: A systematic review." IEEE Access (2024).	[55] (2017)	Enable Alzheimer's patients to live inde- pendently within their living rooms while providing necessary emergency assistance and support.	Machine learning technolo- gies	Kinect device, NFC read- ers/Smartphone	Lack of consideration for implementation and mainte- nance costs

	Ref. (Year)	Objective	Methodology/Technology	Sensors/Controller	Limitations
	[14] (2022)	Create a remote monitor system for AD using Health Remote Monitoring Systems (HRMS) to triage and follow-up with peo- ple living with dementia. Reduce burden on staff and unnecessary hospital visits.	ML, AI, IoT, Logistic Re- gression Algorithm	Heart rate, Arterial oxygen, Body temperature, GSR, Smart Watch	Technical limitations of the remote monitoring system could affect effectiveness
IoMT-based	[56] (2021)	Offer a continuous mechanism using IoT- based sensors to monitor various parame- ters of Alzheimer's patients and enhance their quality of life	IoT, Cloud Computing	Esp8266, LM35, Pulse sensor, gyroscope, LCD, buzzer, resistor, LEDs, Atmega 328 Micro- Controller	The system has technical limits and cannot guarantee the complete normal routine
technologies	[57] (2021)	Develop a cost-effective and user-friendly smart wearable device integrated with a software application for Alzheimer's pa- tients.	IoT, cloud computing (Ubidots)	GPS module, pulse sensor, temperature sensor, OLED Display, Help Button/Node MCU	Small sample size limits generalizability. Focuses on specific population (mild to moderate AD).
	[58] (2021)	Propose a wireless-sensing smart wearable medical device (SWMD) for Alzheimer's patients, monitor vital biomarkers, falls, and provide GPS location.	Cloud Computing	ESP32, Maz30100, buzzer, LCD, gyro sensor, oximeter sensor, temperature sensor, SIM800L, battery 2000mA/Smart Watch	Prototype tested with limited number of patients/caregivers.
Ali, Muhammed Toqeer, et al. "ICT- based solutions for Alzheimer's Disease	[59] (2019)	Propose an IoT-based assistive tool for Alzheimer's patients and caregivers, pro- viding health monitoring and assistance.	IoT	Esp8266 12e, Pulse sensor, OLED display, Battery, Servo Motor, Piezo buzzer, Hc-05 Bluetooth module, Neo 6m GPS tracker/Arduino Uno	Prototype system, depen- dency on Wi-Fi connection.
	[60] (2018)	Design a device to monitor health parame- ters in Alzheimer's patients.	юТ	Pressure Sensor, Heart Rate Sensor, Temperature Sensor, Arduino Nano	Limited generalizability due to sample size not specified
Care: A systematic review." IEEE Access (2024)	[61] (2018)	Develop a portable device resembling a clock to aid elderly individuals in daily activities.	ІоТ	Pulse Sensor, Temperature Sensor, GPS, NodeMCU ESP8266	Effectiveness not supported by evidence

	Ref. (Year)	Objective	Methodology/Technology	Sensors/Controller	Limitations
PAS-based	[15] (2021)	Develop a chatbot named AlzBot for Alzheimer's patients, enhance socializa- tion and location tracking to reduce care- giver burden.	Mobile app with Chatbot	Motion sensor, Smart Phone	Lack of clinical validation of the app's efficacy.
technologies	[63] (2020)	Design an innovative system for monitor- ing Alzheimer's patients, including loca- tion tracking, heart rate monitoring, and assistance in self-administration of drugs.	юТ	GPS module, GSM module, heart rate module, buzzer, accelerometer module, power supply, LCD/Arduino Mega	Validation and cost consid- erations.
	[17] (2020)	Create an application acting as a personal assistant for Alzheimer's patients, includ- ing features like face recognition, wander- ing and fainting detection, assistance in finding a way home, reminders for daily chores and past life, and organizing and planning jobs.	Machine Learning	Accelerometer and gyroscope sensors, Smart Watch	Personalized assistance and practical implementation.
	[64] (2020)	Design and implement a wearable device for accurately determining the 2D location of Alzheimer's patients using a BP-ANN.	Deep Learning - BP-ANN	ZigBee-based XBee S2C anchor nodes, mobile node/ZigBee-based XBEE S2C anchor Nodes	Time-consuming strategy, limited optimization, and movement during experimentation.
	[65] (2018)	Ensure safety and well-being of Alzheimer's patients by tracking their position during daily activities and social interactions.	iBeacon technology	iBeacon devices, Raspberry Pi3	Limited scope and resources
All, Muhammed Toqeer, et al. "ICT-based solutions for Alzheimer's Disease Care: A systematic review." IEEE Access (2024).	[66] (2016)	Detect AD using EEG data and classify it using support vector machines. Monitor patients using GPS and GSM technology.	Support Vector Machine	GSM, ARM cortex M3 LPC 1768, GPS antenna, power supply, LCD display, GSM and GPS module, PC and RS 232 kit/ARM cortex M3 LPC 1768.	Use of a single biomarker (EEG signal) and limited scope of monitoring system

Dilemmas

Ethical considerations in intelligent assistive technologies for dementia

Ienca, Marcello, et al. "Ethical design of intelligent assistive technologies for dementia: a descriptive review." Science and engineering ethics 24 (2018): 1035-1055.

Abnormal Behavior Detection in Activities of Daily Living

A	bnormal Behavior Types	References
Accidenta	Fall detection	[13]–[16], [18], [22],
1		[23], [52], [53], [68],
		[94], [98]–[100]
	Electrical appliances	[30], [63]
	Lost	[43]
Non-	Elderly suffering from dementia	[3], [24], [29], [36],
accidental		[45], [51]
	Rule-based/ threshold indices	[19], [31]–[33], [38],
		[41], [70]
	Loss of appetite and urinary tract	[37]
	infection	
	Elderly suffering from Alzheimer	[62]

Challenges:

- Lack of real-life datasets
- Limited actions are studied
- Vast variation of ADL
- High false alarm rate
- Limited to one location

Tay, Nian Chi, et al. "A review of abnormal behavior detection in activities of daily living." IEEE Access 11 (2023): 5069-5088.

Complex models in fall detection..

"Gondos óra" program in Hungary

Sihag, Gulshan, et al. "Evaluation of risk factors for fall in elderly using Bayesian networks: A case study." Computer Methods and Programs in Biomedicine Update 1 (2021): 100035.

Advanced driver-assistance system (ADAS)

Standards and regulations

The new Vehicle General Safety **Regulation** starts applying today [2024]. It introduces a range of mandatory advanced driver assistant systems to improve road safety and establishes the legal framework for the approval of automated and fully driverless vehicles in the EU. The new safety measures will help to better protect passengers, pedestrians and cyclists across the EU, expectedly saving over 25,000 lives and avoid at least 140,000 serious injuries by 2038.

Moyle, Wendy. "The promise of technology in the future of dementia care." Nature Reviews Neurology 15.6 (2019): 353-359.

Regulation for drug discovery

Dunne, Suzanne, et al. "A review of the differences and similarities between generic drugs and their originator counterparts, including economic benefits associated with usage of generic medicines, using Ireland as a case study." *BMC Pharmacology and Toxicology* 14 (2013): 1-19.

Nature Reviews | Drug Discovery

Nwaka, Solomon, and Robert G. Ridley. "Virtual drug discovery and development for neglected diseases through public–private partnerships." *Nature Reviews Drug Discovery* 2.11 (2003): 919-928.

Issues and principles for HC-AI him human centred artificial intelligence masters

Issues in AI ethics

- 1. Autonomous weapon systems
- 2. Privacy
- 3. Fairness and bias
- 4. Trust and transparency
- 5. Job safety
- 6. Robot rights
- 7. Long-term AI prospects

Principles

- Safety
- Trustworthy
- Accountability
- Regulation
- Human rights and values
- Un(bias)ed
- Fairness
- Privacy
- Shared power
- Diversity and inclusivity
- Collaboration
- Transparency

Russel-Norvig: Artificial Intelligence. A Modern Approach (4th edition)

Novel solutions for HC-AI

Theory

- Privacy-preserving AI: federated learning
- Trustworthy AI: structured/causal inference (XAI)
- Human-compatible AI: collaborative inverse reinforcement learning
- Machine teaching: reinforcement learning with human feedback
- Artificial general intelligence: foundation models, transfer learning

Practice

- Automated programming
- Collaborative workflow systems
- Testing/Auditing
- Ecosystem

Ethics

• Rights for digital assistants/twins

Society & law

- Medical device regulation
- The EU AI Act

Thank you for your attention!