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Abstract

This thesis is the continuation of a prior thesis conducted by Laszlé Freund and
myself [4]. Building autonomous systems that scale in the real world, adapt to human
interaction, and evolve with technological progress remains a significant challenge even
today. This encouraged us to explore the possibilities. We took on robotic navigation
as a multidisciplinary challenge that requires technological solutions from various
domains, including spatial computing, control theory, and semantic understanding.
We developed a semantic navigation framework for robots, independent from spatial
representation and robot configuration. Once a map is constructed, semantic features
provided by a foundation model are added to the detected objects to handle complex
natural language queries, for example: “Identify the object where cold beverages
are kept”. We created a sparse, skeleton graph of the map capturing the underlying
structure of the scene. We introduced three novel contributions: (a) a post-processing
algorithm that enhances sparse skeleton graphs to produce cleaner, more structured
representations, (b) a raycasting-based method that enables safe path generation
specifically for ground robots, and (c) an algorithm facilitating efficient exploration
of unknown environments, while incrementally building the topological graph. We
partition the graph into semantically meaningful regions (e.g., rooms) and assign
contextual labels using a Large Language Model. The graph’s nodes serve as strategic
waypoints, providing navigational guidance for the agent through the environment. I
extend this with visual foundation models (general-purpose goal-conditioned visual
navigation policies) trained and fine-tuned on diverse, cross-embodiment training
data to facilitate zero-shot control invariant to different robot configurations. To
reduce the iteration cycle during development, we implement and showcase our system
in Nvidia Isaac ROS, a photorealistic simulation environment with an emphasis on
seamless transfer to real-world deployment. We demonstrated that our skeleton graph
construction approach represents a viable solution for both comprehensive topological
representation and efficient ground robot path planning, while achieving competitive
performance for aerial vehicle navigation. To comprehensively evaluate our pipeline,
we conducted two distinct case studies that assess both its simulated and real-world
performance. Our novelty lies in the unique integration and improved collaboration
of distinct, state-of-the-art research achievements. Our future plan is to advance the
field of robotics by creating flexible, modular, and future-extensible solutions that
enable robots to safely and efficiently support humans in diverse environments.

1. Introduction

How can we design an aut: robot igation framework, that efficiently solves complex tasks,
explores unknown scenes, or collaborates with humans in shared confined spaces, while remaining agnostic
to sy: -level components such as environment representation or robot typ

In a rapidly evolving world, autonomous robots play a crucial role in aiding humans across various
, from offices and hospitals to pro(ln( tion lines. Many of these are mobile robots operating in
rowded environments, nec ating an und(‘lsmnrlmg of natural language to interpret the
world as humans do. Our prior research aimed to develop an end-to-end framework for semantic robot
navigation enabling seamless interoperability between humans and robots by structuring semantic infor-
mation hierarchically, facilitating effective collaboration without any loss of contextual understanding,
as illustrated in fig. 1. Building on our prior work, I aim to enhance this versatile framework to enable
collision free navigation in unseen environments by utilizing visual foundation models [3, 1, 2].
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I found a designated meeting room with a large table, chairs, and a
. projector screen, making it suitable for presentations and discussions.
Query: Leading you there!
Lead me somewhere we
have a meeting.

Figure 1: A comprehensive semantic understanding of indoor scenes necessitates both scene-level and object-level semantic
information (fig. 2). Semantic navigation allows robots to be guided by complex, indirect natural language commands.
The image illustrates how this system could be effectively deployed in a human-centered office setting.
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Figure 2: A key difficulty lies in the hard-to-obtain nature of high-quality semantic data, which often requires extensive
manual labeling or sophisticated sensor systems. Open vocabular; stems have gained importance due to their ability to
recognize and interpret a wide range of concepts, extending beyond a fixed set of predefined labels without the need for
retraining on every new task or object encountered. State-of-the-art foundation models enable semantic spatial queries,
such as locating specific objects or measuring distances between items with semantic awareness of the surroundings.

2. Background

How to enable robots to perform tasks based on hi el instructions to achieve navigation in complex
environments considering obje gnificance, spatial relationships, and contextual cues?

Research on semantic robot navigation has produced diverse approaches. The solution typically involves
constructing a map representation enriched with semantic features, identifying navigation waypoints,
associating these waypoints with relevant semantic entities, conducting waypoint searches, and guid-
ing the robot along the generated path. We depend on these foundational components, as they are
indispensable due to the inherent complexity of the task, as demonstrated in fig. 3
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Figure 3: The image explains how difficult is to obtain actuation control from a complex natural language command.
It also highlithgs there a veral decompositon steps are involved to understand the surroundings and later on plan a

trajectoy to the goal.
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Figure 4: ConceptFusion integrates foundation models, combined with SLAM, to generate semantic understanding of
environments through open-set, multimodal 3D mapping. First, RGB and depth images are processed, then object masks
and feature embeddings aligned at the pixel level are mapped to 3D points to create a dense 3D map. Second, images, text,
and audio are encoded into query vectors for language queries without requiring additional training or fine-tuning. With
dense 3D mapping and multimodal querying capabilities, it supports zero-shot reasoning across a wide range of concepts.
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3. Methodology

In our workflow (fig. 5), a map representation is constructed using ground truth poses from a simulation
engine, which is replaced by Simultanecous Localization and Mapping in real environments. Each
component in the pipeline is invariant to changing any other. For the semantic navigation problem we
propose a Semantics-Augmented Topologic Inference framework for Navigation, SatiNav fig. 5
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Figure 5: The production pipeline of our proposed framework SatiNav (Semantics-Augmented Topologic Inference
for Navigation). First, RGB-D frames, along with semantic segmentation masks are projected into 3D space. Next, a
topology graph is constructed. The nodes of the graph are organized into clusters, which are then augmented to construct
SatiNav-Scene Graph for hierarchical description of the scene.

The topological map of free space points is constructed using an enhancement of SkeletonFinder; a novel
algorithm SkeletonProcessor and SkeletonExplorer to generate efficient and coherent graphs for
navigation or online exploration. We employ Llama 3 8b as the core LLM, configured with a system
prompt defining its task (fig. 6). With these graphs Visual foundation models offer a strong alternative
for local navigation (fig. 7) and collision avoidance. While reinforcement learning can struggle with
high-dimensional latent spaces, they can achieve robust generalization upon sufficient trajectory data.
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Figure 6: SatiNav-LI (Language Instructions): The figure illustrates the query pipeline, demonstrating a hierarchical
search for chairs to identify objects and locate the nearest required object.
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Figure 7: NoMaD [1] is the first flexibly conditioned diffusion model that can perform both goal-conditioned navigation
and undirected exploration in previously unseen environments. It uses goal masking to condition on an optional goal
image, and a diffusion policy to model complex, multimodal action distributions in challenging real-world environments.

4. Results

We show that SkeletonProcessor and SkeletonExplorer provide efficient, comprehensive graphs
for indoor navigation in both 2D (ground) and 3D (aerial) settings, outperforming three baselines:
grid-based, probabilistic roadmap, and SkeletonFinder. Evaluations used pathfinding success
rates, normalized path length, and computational cost, along with key metrics like reachable object
pairs and path-search times. Both achieved higher s tes and better connectivity, particularly for
ground navigation, while remaining competitive for d(‘rml navigation.

Find path Shorten path
Nodes Neighbors Success % Rel.Length Time () Rel.Length Time (%)

PRM 3D (2k points) 1437 11 14.75% 1.62 3, 1.52 1.09

PRM 3D (4k points) 3990 23 90.25% 1.64 2.43 1.59 1.57

SkeletonFinder3D 1203 2 91.90% 1.89 0.29 1.74 1.60

SkeletonProcessor3D 830 12 90.87% 1.63 0.65 1.58 1.18

arid 2D (0.5m) 4293 6 85.46% 1.66 7.94 1.59 4.57

arid 2D (0.75 m) 613 6 6.01% 1.25 0.23 117 1.95

PRM 2D (1k points) 584 10 61.4% 2.19 0.34 2.13 1.89

PRM 2D (2k points) 1496 20 85.51% 1.89 0.31 1.75 1.51

SkeletonProcessor2D 820 8 90.72% 1.72 0.14 1.69 215

SkeletonExplorer2D 968 2 92.17% 2.13 0.18 1.99 3.16

Table 1: Comparison of graph construction algorithms in 3D above and 2D below.
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There is a demand for navigation graphs that are able to robustly capture complex concepts like rooms,
buildings, and hallways. Comprehensive topologic graphs allow us to extract such features using graph
theory or data mining. A straightforward benchmark for assessing structural robustness is clustering,
where each waypoint in the navigation graph is grouped based on a measure of similarity (fig. 9).
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Figure 9: Topologic graphs produced by SkeletonProcessor clustered with different methods: (a) edge betweenness
partitioning, (b) Louvain community clustering, (c) spectral clustering, (d) infomap clustering.

4.1 Case study: Semantic Navigation in Simulated Office Scene

The environment was well-aligned and sparsely populated, making object detection straightforward.
Large language model (LLM) queries sometimes yielded spurious answers, but generally succeeded.
Pathfinding produced suboptimal or collision-prone routes, underscoring the need for an improved local
planner. Despite these issues, sequential queries (fig. 10) ran reliably, confirming the system’s potential
for future refinements while noting it is not yet fully ready for real-world deployment.

b) User:  Where can i find the security codes
for all office workers?

a)

Lm:
Inferrred Task: Find security codes for office workers.
Response: No security codes are mentioned in the scene description.

User:  Where can i ask about dog policy
in the office?

Lm:
infereed Task: Find where to ask about dog policy in the office
Response: The reception area is likely the place to ask about dog policy.

s to the LLM:
iNav Sc

levant queries are understood and denied, while achievable ones
Graph representation of the simulated Office environment.

4.2 Case study: Scene Graph Construction of Real World Scene

Data (fig. 11) from a real building level exhibited noise and misalignment, though ray-walking managed
these drifts. Inconsistent door states added complexity, and redundant objects (e.g., many identical
chairs) inflated memory. Misdetections by vision-language models and LLMs highlighted reliability gaps,
underscoring the need for improved preprocessing and error handling.
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How would you describe and label
this room inside an office building?

stove, and refrigerator, which are typical features

LLM:  The image shows a kitchen area with a sink,
found in a kitchen

c)

Figure 11: (a) Top-view of the scene graph generated by SatiNav, showing high object redundancy in the top left due to
multiple identical green chairs. The topological graph successfully achieves full room co i
(b) Image description LLM struggling to recognize a complex scene involving a toy kitchen s
representation of the Real World Office environment, visualized.
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4.3 Ethics and Outlook

A human-centered approach ensures that robots augment rather than replace human capabilities,
promoting inclusive solutions that respect individual autonomy and dignity. In practice, this
involves careful data governance, meaningful stakeholder engagement, and robust fail-safes to
prevent harmful outcomes. Beyond safeguarding personal data through strict encryption and
compliance with relevant regulations, developers can implement “people filters” that exclude human
figures from pointcloud data, preserving pri Thorough prototype testing in both static and
human-in-the-loop dynamic environments tical, complemented by transparent communication
of system capabilities and continuous user feedback to ensure ongoing ethical compliance and adaptability.

This research focuses on collision avoidance using visual foundation models, while ongoing work addresses
topology-graph optimization, object-approach point determination, and robot configuration from scratch.
Large real-world maps, effective domain randomization and assembling a complete robot system opens
up opportunities for sim-to-real transfer and real-world testing of the proposed framework in concrete
scenarios. We at SatiNav plan to launch a startup around this general navigation framework (fig. 12),
which adapts to a wide range of robot configurations to provide safe, efficient everyday assistance for
humans. In pursuit of affordability and universal access, we aim to develop cost-effective, potentially
3D-printed robots for housecleaning, kitchen work, waitering, gardening, and food delivery. Ultimately,
our goal is a future-extensible, modular, and scalable navigation system that can integrate seamlessly
into the Industrial Metaverse.

Figure 12: The first QR code points to our SatiNav “first look” demonstration, the middle image shows our initial
prototype SatiBot-v1, which is designed as a waiter robot base. The last QR code links to our previous research [4], where
additional references and supporting materials are available.

References

[1] Ajay Sridhar et al. Nomad: Goal masked diffusion policies for navigation and exploration, 2023.
[2] Dhruv Shah et al. GNM: A General Navigation Model to Drive Any Robot. In International
Conference on Robotics and Automation (ICRA), 2023.

Dhruv Shah et al. VINT: A foundation model for visual navigation. In 7th Annual Conference on
Robot Learning, 2023.

Lészl6 Freund and Méark Czimber.

3

4

Semantic navigation agnostic to map-robot variations, 2024.



