
Optical and Electrochemical Sensing with Gold Nanoparticles

Máté Kálmán Stift | BME Budapest Supervisors: Dr. Attila Bonyár, Dr. Zoltán Lábadi, Dr. Péter Petrik

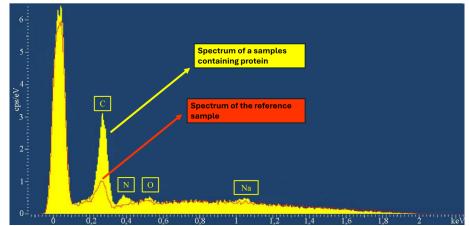
INTRODUCTION

In developing countries around the world, drinking water contaminated with heavy metal ions (especially arsenic) is a global health problem. According to the World Health Organisation (WHO), more than 1 billion people are affected to a greater or lesser extent.

AIM

I aim to develop a sensor for heavy metal detection that can easily evaluate liquid samples at the sampling site. Based on modern scientific knowledge available test methods are not suitable for routine field testing. A portable electrochemical sensor, in addition to providing higher accuracy than test kit methods using stripes, would be less burdened by the human error factor. [2]

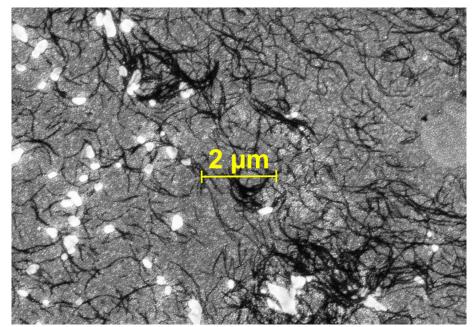
Rapid test kit for in situ detection of heavy metal ions. [3]


METHODS

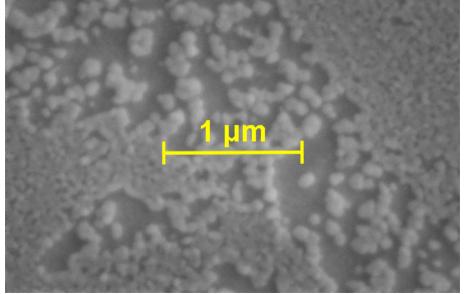
In this work, gold nanoparticles were created from solution in a controlled manner by measuring the surface area during layer formation using nanometre-sensitive optical methods, and then, after the formation of a suitable layer, protein filaments suitable for binding heavy metal ions (mainly nickel) were attached to the sample. [4]

THE REAL REAL PROPERTY OF LARSE STATES

RESULTS


Using the untreated sample as a reference (red line), it can be seen that the ratio of carbon and nitrogen is higher in the protein-layered part (yellow spectrum). Nitrogen is only present in the protein filament, so the higher value of nitrogen on the treated surface clearly demonstrates the success of the deposition. [5]

Comparison of protein covered and untreated surfaces by energy dispersive X-ray spectroscopy.


FUTURE PLANS

We would like to use AI in the form of an image detection algorithm to evaluate the deposition.

Evaluation of specific protein filaments by SEM at 25 000x magnification.

- PROBLEM 1: It requires a high level of routine to decide whether certain parts of the SEM image provide relevant information.
- PROBLEM 2: There is a lack of available data, as no other research group other than ours deposit the same specific protein filaments on a surface formed by gold nanoparticles in order to detect heavy metal ions.

Evaluation of gold deposition by SEM at 50 000x magnification.

.....

- Faiz Norrrahim, Mohd Nor et al. Nanocellulose: a bioadsorbent for chemical contaminant remediation. RSC Advances, 2021; 11(13): 7347-7368. DOI: 10.1039/DORA08005E.
- Homa Hassan, Pradakshina Sharma, Mohd. Rahil Hasan, Shiwani Singh, Deepanshi Thakur, Jagriti Narang. Gold Nanomaterials - The golden approach from synthesis to applications. Materials Science for Energy Technologies. 2022; 5: 375-390. DOI: 10.1016/j.mset.2022.09.004.
- 3. ITS Europe. Leadquick with bluetooth water test kit. https://www.itseurope.co.uk/products/exact
- Bakos Csaba J. (2022). Diploma. Budapesti Műszaki és Gazdaságtudományi Egyetem, Villamosmérnöki és Informatikai Kar, Elektronikai Technika Tanszék.
- Daisuke Shindo and Takashi Oikawa. Energy dispersive x-ray spectroscopy. In Analytical Electron Microscopy for Materials Science, pages 81–102. Springer, 2002. DOI: 10.1007/978-4-431-66988-34.

