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Multimodal AI Framework: Combines LLM-
based real-time sentiment analysis with
structured stock market data for better
forecasting.
Structured data: Stock prices, trading
volumes (via financial APIs).
Unstructured data: Sentiment extraction
using LLMs.
Cleaning, tokenization, and synchronization
for seamless integration.
Uses transformers and deep learning
models.
Applies early and intermediate fusion for
combining textual and numerical insights.
Implements bias mitigation strategies.
Ensures GDPR compliance for responsible
AI use.

Abstract: Financial market forecasting has traditionally relied on structured historical data such as stock prices and economic
indicators. However, market trends are increasingly influenced by real-time unstructured data, including financial news, social media
sentiment, and corporate announcements. Existing models often fail to integrate these diverse data sources effectively, limiting their
predictive accuracy and trustworthiness. This research proposes a human-centered multimodal AI model that combines Large
Language Model (LLM)-based real-time sentiment analysis with structured financial data to improve stock market forecasting. 

Stock market forecasting is a crucial
challenge in financial analytics, with
investors relying on predictive models to
anticipate market trends. Traditional
approaches primarily use structured
historical data such as stock prices and
trading volumes. However, market
movements are increasingly influenced by
real-time unstructured data, including
news, social media sentiment, and
corporate reports. Existing models fail to
fully integrate these diverse data sources,
limiting their accuracy and reliability. This
research introduces a human-centered
multimodal AI framework that combines
LLM-based sentiment analysis with
structured financial data, improving
forecasting precision, transparency, and
trust for investors, traders, and analysts.

Stock market forecasting has traditionally
relied on historical structured data, such as
stock prices and trading volumes.
However, financial markets are highly
volatile and influenced by real-time
sentiment from news and social media.
Recent advancements in Large Language
Models (LLMs), such as GPT-based models
and FinBERT, have enabled sentiment-
driven stock predictions, outperforming
traditional models in short-term
forecasting [1], [2]. 

However, LLMs alone lack explainability and
robustness, making their integration with
structured financial data crucial for
accuracy [3]. Multimodal AI frameworks
combining numerical and textual data have
shown 23% improvement in predictive
performance [4]. Studies emphasize the
need for explain ability tools like SHAP and
LIME to enhance investor trust [5]. Ethical
concerns, such as bias in AI models, raise
regulatory challenges under GDPR
compliance [6]. 

This research introduces a human-centered
multimodal AI framework that integrates LLM-
based real-time sentiment analysis with
structured financial data to improve stock
market forecasting. Unlike traditional models,
our approach captures market sentiment,
ensures transparency, and enhances prediction
accuracy using deep learning and explain ability
tools like SHAP and LIME. By prioritizing bias
mitigation and GDPR compliance, this model
fosters trust and fairness in financial AI
applications. The findings will contribute to
more reliable, ethical, and data-driven decision-
making for investors, traders, and financial
institutions, bridging the gap between AI-driven
finance and human interpretability.
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Real-time sentiment analysis enables
faster responses to market
fluctuations.
SHAP and LIME tools provide clear,
interpretable model outputs, ensuring
trust in AI-driven predictions.
Ethical AI implementation to prevent
algorithmic bias and ensure GDPR
compliance.
A scalable AI framework that can be
adapted for financial institutions, hedge
funds, and retail investors.
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Fig. 1. Multimodal Stock Market Forecasting System Flow
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Improved stock market forecasting by
integrating LLM-based sentiment
analysis with structured financial data.


