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Research Methods: he challenges posed

» ¢ PreSS Model (Predict Student Success )

» ¢ EBMs (Explainable Boosting Machines )
» ¢ Decision Trees

» ¢ Rule-Based Models

We will evaluate and compare various ML techniques to
identify the most effective and accurate ones for, P
predicting educational outcomes in CS1 students. S =

Results and Findings:
Black Box Models

Black-box Machine Learning

» Frequently resulting in reduced interpretability and uncertain gains in prediction accuracy -~

e [t can be challenging to criticize the decision-making process or identify any shortcomings in the conclusions dra

» Many users find them less understandable and trustworthy than interpretable machine learning techniques D sctbon oo
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nterpretable Machine Learning Techniques

Are “inherently interpretable” meaning they are easily understood without further explanation required

Fraudster White-box Reasons Why Fraudster
Machine Learning (fake email,stolen card, etc. Detected

Trust is enhanced by making model decisions understandable to users

Accuracy and performance are often improved due to trust and detecting bias

Examples — (Explainable Boosting Machines) EBMs, decision trees, and rule-based models
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In conclusion, we must challenge the prevailing notion that black box models are
essential for achieving accurate predictions in Explainable Machine Learning. We
need to encourage policymakers to prioritize interpretable models over black box
ones such as deep learning and LLMs, and to be aware of the current challenges in
interpretability. The study stresses the urgency of preventing black box models
from being accepted without adequate scrutiny, as their use can lead to significant
- societal risks and poor decision-making in critical areas such as criminal justice,
public safety, healthcare, and the education system.
A proposed direction for future research could be the implementation of robust
Interpretable Models. By leveraging research, we can develop new algorith
methodologies that inherently emphasize interpretability, allowmg for
in machine learning systems in high-stakes scenarios.
it is essential to establish guidelines and standards fo:
interpretability of machine learning models. Holding organi
eir use of black box systems is particularly vital in sensitive appllcatlons

Black Box Testing
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